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Comment on: Ising Models on Hyperbolic Graphs 
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New proofs are given for Propositions 1 and 2 of C. C. Wu, J. Stat. Phys. 50:251 
(1996). The propositions involved upper and lower bounds on the critical tem- 
perature for these models. Besides being more direct than the previous proofs, 
the new proofs improve both bounds. 
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In a very recent article in this journal  Wu (1) considered ferromagnetic Ising 
models on hyperbolic graphs. He presented four propositions regarding 
these systems which were basically proven using results from percolation 
theory. In particular in his first proposit ion he established an upper  bound 
on the critical temperature for these Ising systems while in the second 
proposit ion he followed this up by proving a lower bound on the critical 
temperature. We present alternate proofs of his first two propositions. The 
proofs may be considered more direct in that they do not resort to results 
from percolation theory. Also the proofs improve both of his bounds. 

The system consists of  a ferromagnetic ]sing model with nearest 
neighbor interactions on a graph G. These graphs were defined in the 
following manner. "Let T~ to be a homogeneous tree with degree k (i.e., 
each site of T2 has exactly k + 1 neighbors) and let 0 be the origin of  T~. 
Define T~ to be the "forwarding" tree obtained by deleting one of the k + 1 
edges emanating from 0. Then G is the graph obtained by adding to Tk 
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Fig. 1. (a) The first levels of the hyperbolic graph for k = 2. (b) The first four levels of the 
Husimi using the three site triangle as the basic building block. 

edges connecting equal-level sites of Tk. ''(1) See Fig. l a  for the k =  2 case. 
We take the Hamiltonian to be 

~ = - J  ~ aiak (1) 
{i, k} 

where the sum is over the bonds of G. We take J >~ 0 and a = _+ 1. Note, we 
do not have a factor of 1/2 which is in ref. 1 as we feel the above is simpler 
when dealing with the spin system. We compute thermal averages in the 
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standard manner, denote them by brackets, ( ) ,  and take fl = 1/kT. We 
define M =  ( a o ) +  with the subscript 0 denoting the base or "root" site of 
the tree, and with the subscript + denoting plus boundary conditions. We 
begin with Wu's Proposition 2. 

P r o p o s i t i o n  2. If flJ> (1/2) In[ (k + 1 ) / ( k -  1)], then M > 0 and 
consequently there is more than one Gibbs state. 

Proof of Proposition 2. One sees from Fig. la that if the horizontal 
interactions are deleted one has a Bethe lattice. The thermal average of the 
base or "root" site, a0, can be computed exactly. One very easy method to 
compute (O-o) is to treat the system as a dynamical system. See Eggarter (2) 
or Thompson (3) for this approach. One has for flJ>(1/2) ln[(k+l)/ 
( k -  1)] that M > 0. The fact that the base site has k nearest neighbors or 
k + 1 is irrelevant. From the classic correlation inequalities of Griffiths, 
Kelly and Sherman, (5' 5, 6) in particular the second Griffiths, Kelly, Sherman 
inequality (hereafter GKS II) one knows that adding ferromagnetic inter- 
actions to get back to the full graph G can not decrease the value of M 
hence the proposition is proved. | 

Now one can do considerably better than the above lower bound for 
the critical temperature by deleting only a subset of all the horizontal inter- 
actions shown in Fig. 1. This has an importance beyond simply having a 
better bound in that if one has a lower bound less than (1/2)ln(k)/k then 
there is a second phase transition characterized by behavior of the two- 
point function. For  details see ref. 1. Wu's bounds as stated above produce 
such a situation for k/> 8. By deleting only some horizontal bonds we bring 
this down to k >~ 5. Wu states in ref. 1 that the occurrence of this second 
phase transition it is believed to occur for k/> 2. 

In particular, if one deletes only those interactions resulting in the 
graph G' shown in Fig. lb for k = 2 and does analogous deletions for other 
k values then one has a Husimi tree rather than a Bethe lattice. The basic 
buiding block for k = 2 is a three site triangle consisting of a base site inter- 
acting with two sites on the next higher level and their horizontal interac- 
tion. Generally it consists of a single base site interacting with k other sites 
on the next higher level along with their horizontal interactions. Using the 
same approach as with the Bethe lattice it is relatively simple to calculate 
the temperature below which M > 0. The calculations involve a one dimen- 
sional, dynamical system consisting of a rational function as does the 
calculations involving the Bethe lattice. The larger the value of k and the 
fewer the number of horizontal interactions deleted the more complex this 
rational function becomes. The values of our bounds using this approach 
for k = 2 , 4 , 5 , 6 ,  and k = 8  are given in Table 1. We denote these 
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approximations as First Level Husimi Tree approximations.  The one 
dimensional map governing each of these systems was found using Mathe- 
matica as was the temperature at which M > 0. This for larger k systems 
involves finding the zeros of  a polynomial  in exp[2flJ]  and since the degree 
of the polynomials is greater than five must be done numerically. Even for 
the k = 2 case it involves a fourth degree polynomial  and the analytic 
expression of the solution is not very illuminating. 

Finally, in regards to lower bounds on Tc, still further improvement  
can be had by considering still less deletion of horizontal interactions or 
equivalently using larger building blocks for the generation of the Husimi 
trees. At the bo t tom of Table 1 results for the k = 2 case are given using 
building blocks with three levels, four levels and five levels of sites in the 
basic building block. Despite this sequence of improving bounds we have 
not  been able to establish the existence of Wu's second phase transition for 
k < 5 .  

We now present an improvement  of Wu's Proposit ion 1 along with 
our proof. This is in essence an upper  bound on the critical temperature 
and our methods of proof  are based on earlier works of  the author/v) 

Proposition 1. If  flJ is such that tanh(flJ) < 1/(k + 3) then M =  0 
and consequently the Gibbs state is unique. 

Proof o f  Proposition 1. First we remark that it will make our work 
somewhat simpler if we add on each horizontal row, except at the root site 
level, an interaction between the right most  site on a row with the left most  
site on the same row. This means that a spin on any site except the root  
site has k + 3 interactions. If  we can find a temperature above which M = 0 
for this system then by GKS II  M =  0 for the original system. 

Table 1. Lower  and Upper  Bounds on T c 

Lower bounds on T,: U p p e r b o u n d s o n T ~ ,  

k Reference ( 1 ) This Paper" Reference ( 1 ) This paper 

2 1.8204 2.4853 b 6.9522 4.9327 
4 3.9152 5.1699 10.9697 6.9522 
5 4.9326 6.2133 12.9744 7.9582 
6 5.9440 7.4167 14.9778 8.9628 
8 7.6944 9.5462 18.9825 9.5462 

" Using the first level Husimi tree approximations.  
~' Using second, third, and fourth level Husimi tree approximations one has 2.7332, 2.9106, 

and 3.0333. 



Comment  on: Ising Models on Hyperbolic Graphs 517 

For  Ising spins one has the identity 

e x p [  flJ0-k0-1] = cosh(flJ)[  1 + tanh(flJ) akal] (2) 

where hereafter we set T =  tanh(flJ). Applying this identity to the thermal 
average of some at- one obtains 

(0-i) -- ( 0-j) jk q- T(  0-i0-j0-k ) jlc 
1 + T(0-j0-k) 

(3) 

where the subscript j k  on the brackets denotes a thermal average where the 
interaction between t h e j t h  and k th  sites has been deleted. One may use the 
identity (2) again to delete other interactions, 

For  simplicity we will suppose that k = 2. Then for the root  site in 
Fig. 1 one uses the identity twice to delete the two interactions involving 
that site. Then one has 

(0-o>ot,o~ + ( 3 T(0-1)ol (0-o) - T_0-2_ 01, 02 + (4) 
1 + T(a00-2)01, 02 1 + T(0-00-1) Ol 

Now we are looking to find a condition on the temperature where we can 
prove that  the left hand side of (4) is zero. Hence we will find an upper  
bound to the left hand side of (4) which we can eventually show goes to 
zero. All thermal averages are non-negative by the first Griffiths, Kelly, 
Sherman correlation inequality (4"5'6) (hereafter G K S  I)  and hence if we 
want an upper  bound to the terms on the right hand side of (4) we can 
begin by setting each denominator  equal to 1. Furthermore if we 
"un-delete" the interactions between pairs of site (0, 1) and (0, 2) by G K S  
II  we further increase the right hand side therefore we have 

(0-o) ~ 2T(0-, ) (5) 

Note  we have used the fact that (O"0)01,02 and by symmetry ( a t )  = (0-2)- 
Now we delete the five interactions involving 0-1. Note  that there are 
actually 2 interactions between sites 1 and 2 due to our statement at the 
start of the proof  regarding an extra interaction between the right most  and 
left most  sites on any horizontal line. Now we make the same approxima- 
tions used in going from Eq. (4) to Eq. (5). Doing so gives us 

( 0 - o ) < 2 T ( 0 - 1 ) < 2 T ( T ( ( 0 - o ) + ( 0 - 2 ) + ( 0 - 3 ) + ( 0 - 4 ) ) )  (6) 

Location of sites 0, 1, 2, 3, and 4 are denoted in Fig. la. If  we have that  
(0-o) ~< ( a l )  <~ (0-4) then we can write 

( a o )  ~<2T(0-1) <~2T(ST)(0-4) (7) 
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We can cont inue this process ad infinitum where at each step we must  
replace spins at lower levels with a spin at higher level. As long as we k n o w  
that  the thermal average of  a spin at the higher level is greater than or  
equal to that  of  a spin at a lower level we are always produc ing  an upper  
b o u n d  on the right hand  side. We do know this by G K S  II  since we can 
start with the roo t  site spin, add interactions and have it become a spin at 
the first level. Since we have added interactions by G K S  II  as a spin at the 
first level it has a thermal  average equal to or  greater than its initial value 
which was as the roo t  site spin. By adding still more  interactions we can 
change our  spin from a first level spin to a second level spin and again by 
G K S  II  it then must  have a thermal  average equal to or  greater than  wha t  
it had  as a first level spin. Hence after N steps we have established 

( a o )  <~2T(a~)  <~2T(5T)N(an)  (8) 

letting N--* oo we have, if 5 T <  1, then ( a o )  ~<0. By G K S  I ( g o )  1>0, 
hence ( g o )  = 0. Fo r  general k we have, if (k + 3) T <  1, then ( g o )  = 0 and  
the proposi t ion is proven. 

See Table 1 for compar i son  of  this bound  with that  of  ref. 1. The 
inequali ty tanh(f lJ)  < 1/(k + 3) is equivalent to f lJ < (1/2) In[ (k + 4) /  
(k + 2)].  Hence we have that  a Bethe lattice with branching ratio k has a 
critical temperature which is a lower bound  for these graphs  and a Bethe 
lattice with branding ratio k + 3 has a critical temperature  which is an 
upper  bound  for these graphs. 
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